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Abstract. This paper presents a multi-dimensional thermomechanical constitutive model for shape memory alloys 
(SMAs). This constitutive relation is based upon a combination of both micromechanics and macromechanics. The 
martensite fraction is introduced as a variable in this model to reflect the martensitic transformation that determines 
the unique characteristics of shape memory alloys. This constitutive relation can be used to study the complex 
behavior associated with 2-D and 3-D SMA structures. A simple example using this constitutive model is also 
presented, which reveals a new and interesting phenomenon of 3-D SMA structures. 

Introduction 

Based upon the one-dimensional thermomechanical constitutive relation developed by 
Liang and Rogers [1], a multi-dimensional thermomechanical constitutive model for shape 
memory  alloys is further developed and presented in this paper. Unlike the constitutive 

model developed by Bondaryev and Wayman [2], this multi-dimensional constitutive model 
uses a newly introduced internal state variable, the martensite fraction, instead of using the 
traditional plastic flow theory. This thermomechanical constitutive relation reflects the 
fundamental  characteristics of shape memory alloys, i.e., the phase transformation involved 
in shape memory effect. 

Needless to say, the first concern when developing a multi-dimensional model is whether 
its one-dimensional version is correct. Previous verification and discussion [3] show that the 
one-dimensional constitutive model can provide a quantitative prediction and description of 
the mechanical behavior of shape memory alloys. Based on the one-dimensional constitutive 

relations for SMAs, design methods for SMA actuators [4] and SMA springs [5] have been 
developed.  Even though most current applications of SMAs as actuators are in wire (or 
spring) form, a few 3-D SMA components do exist. A good example of these is the SMA 
pipe coupler [6]. The reason that there are fewer applications of 3-D SMA components is 
that no practical multi-dimensional constitutive model for SMAs existed until Bondaryev and 
Wayman [2]. However ,  Bondaryev and Wayman's multi-dimensional model is only an 
extension of plasticity theory. Graesser [7] developed a multi-dimensional model for SMAs 
based on a viscoplastic model. This model is capable of describing the nonlinear and 
hysteretic behavior of SMAs but fails to include temperature as a primary variable (it 

assumes non-change uniform temperature distribution), which undoubtedly limits its applica- 
tions. 

Generalized multi-dimensional constitutive relations of  SMA 

Considering a three-dimensional body, the original coordinate is denoted by X, and the 
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current deformed configuration is denoted by x. X stands for ( X  1 X 2)(3) T where the 
subscripts '1', '2', and '3' represent the X, Y, and Z coordinate axes and the superscript 'T'  
represents the transpose of matrix, x can also be written as (x I x 2 x3) v. The deformation 
gradient, f, is given as 

f :  (7xT) T , (1) 

where 

~ O/OX11 
V=IO/OX2 ] . 

La/ax3J 
(2) 

The Green-Lagrange strain is defined as 

fTf_ I 
- - - T -  ' ( 3 )  

where I is  a unit tensor. 
The 2nd Piola-Kirchhoff (P-K) stress tensor can be derived as 

~.  = P o  f - l o ' ( f - l ) r ,  ( 4 )  
p 

where P0 is the density in the original configuration and p is the density in the current 
configuration, or is the Cauchy stress tensor. The reasons for using the Green-Lagrange 
(G-L)  strain and 2nd Piola-Kirchhoff stress are: (1) they are invariant under rigid body 
motion; (2) they are expressed in reference to the original configuration; therefore, it does 
not matter whether the deformation can significantly change the geometry of the 3-D body; 
(3) they are energetical conjugates, and (4) the deformation of SMAs can be as high as 8% 
(maximum recoverable strain), the Green-Lagrange strain can correctly describe the finite 
deformation of SMA. 

The first and the second laws of thermodynamics can be written in the current configura- 

tion as 

p/_) - tr(crv) + div qsur - Pq = 0 2  

pS  - pq 1T + T -1 div qsur - -  T qsur" grad T/> 0, 

(5) 

where tr( ) denotes the trace operator, and 'div' and 'grad' are the divergence and gradient 
operator in the current configuration, respectively. T is the temperature, S the entropy, q the 
heat generated by internal heat sources, qsur the heat transferred from surroundings, and U 
the internal energy, v is the deformation velocity tensor defined by if-1. Rewriting the first 
and the second law of thermodynamics in the original configuration yields: 

po " - t r ( f i ' ~ )  + D i v  Q - Poq = 0 

Po ~ - p o q  1T + T - I Q -  T 2 Q . G r a d T 1 > 0 ,  
(6) 
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where 'Div' and 'Grad' are the divergence and gradient operator in the original reference, 

respectively. Q is defined as 

Q= P~f J'q~.r- (7) 
P 

The general state variable, A, is defined as 

A --- (i,j, T, s c) 1,2, 3,  (8) 

where ~ is the martensite volume fraction, an internal variable introduced to describe the 
phase transformation involved in the mechanical behavior of SMAs. Martensitic transforma- 
tions are governed by the Helmholtz free energy. According to Miiller [8], thermodynamics 
behind the phase transformation can be described as: 'the energy, E, tries to minimize by 
pulling all particles into the depths of the potential wells, and the entropy attempts to 
maximize by distributing the particles evenly over the available range of shear lengths. In 
this competition, it is the free energy, 

O(A) = U -  S T ,  (9) 

that achieves a minimum'. The free energy is the summation of the non-chemical energy, 
such as the strain energy and the thermal energy, and the chemical free energy. In other 
words, it is the overall strain energy that affects the phase transformation rather than the 
individual strain and stress components. From the experimental study conducted by Ka- 
jeshita et al. [9], the hydrostatic pressure has a small influence on the phase transformations. 
The deformation, along with phase transformation, is mainly of a shear nature. This point is 
also supported by the actual physics behind martensitic phase transformation, i.e., the 
deformation associated with both the martensitic and reverse transformations is shear 
detwining and twining. The strain energy that affects the phase transformation should be the 
distortion energy. The transformation function or criteria for an SMA component subjected 
to multi-dimensional forces derived by Bondaryev and Wayman [2] also indicates that the 
phase transformation begins when the distortion strain energy is greater than a certain 
chemical free energy. 

Based on finite strain J2 deformation theory [10], the distortion strain energy, Uj, for finite 
strain may be expressed as 

1 1 
Uj = ~ J2 = ~ aCq%q, (10) 

where G is the shear modulus, J2 the second invariant of stress deviator tensor given in terms 
of 2nd Piola-Kirchhoff stress, ~q the equivalent 2nd Piola-Kirchhoff stress, and e'-eq the 
equivalent Green-Lagrange strain. It is necessary to assume that SMA is incompressible. 
Therefore, the general state variable may be expressed in terms of the equivalent G - L  strain 
a s  

A == (geq, T, so). (11) 

The equivalent G - L  strain, eeq, and equivalent P -K stress, deq, are defined by 
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-2 -2 ",41/2 
= 1V~[(E11 -- ~22) 2 -'[- (E22 -- E33) 2 "4- (E33 -- El1) 2 + 6(gz,2 + e23 + e3 , ) l  (12) 

- I ~t -2 x]lt2 
1 _ -2  + °'31)1 ( 1 3 )  Oreq ~--- V 2  [(~11 -- (T22) 2 q'- ((~22 -- t~33) 2 + (033 (rll) 2 + 6(a~2 + 0"23 

The Clausius-Duhem inequality in the original configuration can be derived from Eqs (6), 
(9) and (11) as 

[ ( 1  01~ ) 0EeqX~ ._] ( 0 ( I ) /T  0(I) 1 
tr tr 0feq ~ - f f ] e ] -  S+ OT / - ~ - p ~ Q G r a d T ~ > 0 .  (14) 

The general stress-strain relation based on continuum mechanics is given by 

0(I) 0Eeq (15) 
O" : PO 0~eq 0g  

From this step, the matrix form will be used for further derivation of the constitutive 
relations. The stress and strain vectors are 

{t~} = {~1 t~22 t~33 ~12 ~23 ~31} r (16) 

and 

( E )  ~--- (Ell  E22 E33 ~12 E-23 E31} T" (17) 

The time derivative of the P-K stress from Eq. (15) may be written as 

( OEeq ] (  OEeq /T f0 oq/. - 

.f a~q where t o~ } is a 6 × 1  matrix, given by {O~oq o~o~ t)eeq dieq 0eeq Oeeq~rT ~11 0~22 0~33 0~12 0~23 0~31 I ° D, f~, and O are the 
Young's modulus, transformation tensor, and thermoelastic tensor of the materials as 
defined in the one-dimensional model [1]. They are given by 

02dp 
D = Po 0g2eq 

02dP (19) 
~'~ = Po Ogeq 0~ 

02(I) 
O = P0 0ieq OT ' 

Equation (18) may be written in incremental form: 

= Dt  Og Jt  ag J + at  0i J de + o(- -~-~ d T .  ( 2 0 )  

The strain increment may be decomposed into two components, the elastic strain and the 
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transformation strain, as follows, if the deformation does not reach plastic range and the 
temperature is constant: 

{dg}= {di  e } + ( d g ' } ,  

where the elastic strain component is defined by 

(21) 

{d~e} = {cg}- '{d~} , (22) 

where {{q} is the elastic material property matrix. After substituting Eqs (21) and (22) into 
Eq. (20), Eq. (20) becomes: 

({1} D( OgeqlfOyeqlr f0G//0g /T / O~eq / 
0 ~ - - / / 0 ~ - ~  (c~}-l) {d~} (dU} d~ - = P ~ - 3 t  O~ 3 + l ~ t ~ - 3  " 

(23) 

Note, if the SMA material is in the elastic range, the right side of Eq. (23) vanishes. This 
gives the elastic material property matrix as 

0~eq 0~eq T 
(24) 

The martensite fraction, ~, may be derived based on transformation kinetics. Liang [3] has 
proposed two empirical relations to describe the phase transformation processes. The cosine 
model is used here. In a martensitic transformation, the martensite fraction is given by 

~: = ½ {cos[aM(T- M r) + bM~] + 1}. (25) 

For a reverse transformation (martensite to austenite), the martensite fraction according to 
the cosine model is 

= ½{COS[aA(T-- As) + b,~d'] + 1}, (26) 

where A s and M s are the austenite start temperature and martensite finish temperature, a M 
and a A can be derived from the transition temperatures, and b M and b a may be obtained by 
assuming the linear relations of transition temperatures and stress. Detailed discussion can 
be found in previous work [1, 3]. 

The martensite fraction given in Eq. (25) or (26) is function of stress and temperature. It 
is assumed that the martensite fraction can be expressed as follows for multi-dimensional 
problems according to the discussion of equivalent P-K stress and G-L  strain: 

~: = E(~eq, T) ,  (27) 

where ~eq is the equivalent P-K stress given by Eq. (13). The increment of martensite 
fraction, dG therefore, can be written as 

0E a = , 
ds ~ = 38e----- ~ dSeq + - ~  d T ,  (28) 

where d~eq can be expressed as 
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d°'eq = I.-'-~--J {dS}. (29) 

Substituting Eqs (28) and (29) into Eq. (23) and rearranging yields: 

{d~} = {dgt} 

{I) - Dt Og Jt  O} J {{~) I - - a  00.e----" ~ [. 0 i  J[. 0l~ J 

~ 0~en / 0~ / 0~eq / 

+ d T .  (30) 
/ 0~eq ~/ 0~eq / T -1 0~ 0Eeq l /  0~eq / T 

Equation (30) is a general expression of the constitutive relation for SMAs. It can describe 
both the stress-strain-temperature relations of SMA and the shape memory effect. Al- 
though it is derived based on thermomechanics, it is very much similar in form to the 
constitutive relations of thermo-plasticity [11]. An internal state variable, ~, is introduced in 
this thermomechanical model to represent the history dependence of the stress-strain 
behavior of SMAs instead of the plastic strain for the constitutive model of plasticity. In fact, 
the internal state variable, ~, has a direct relation with the transformation strain, g', which is 
defined similarly to the plastic strain [3]. To use this thermomechanical constitutive relation, 
the empirical relation of transformation kinetics must be used. Equation (30) can be used to 
predict and describe the multi-dimensional stress-strain field without relying on the input of 
stress-strain data. The simplified Eq. (30) is 

{dS} = {~}{d/ '}  + {K} d T ,  (31) 

where {~} and {K} can be found by comparing Eq. (31) with (30). Solving for the 
transformation strain yields: 

{di'} = { ~ } - l { d o }  - {~}-I{K} d T .  (32) 

The elastic strain, plastic strain, and thermal expansion strain can be added to the above 
equation to generate a complete thermomechanical elasto-plastic constitutive relation for 
shape memory alloys. The L6vy-von Mises model provides a plastic strain increment: 

3 deePq {g}, (33) 
{diP} = 2 O'eq 

P is the equivalent plastic strain and {s} the deviatoric stress vector [12]. where 8eq 
The thermal expansion strain is given by 

{deT} -- {a} d T =  {a a a 000}T d T ,  (34) 

where a is the thermal expansion coefficient. 
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The total deformation of SMAs may be decomposed into elastic, transformation related, 
plastic, and thermal strain because the four types of deformation are different in nature. 
Elastic deformation is thermodynamically reversible. The deformation associated with phase 
transformation is not thermodynamically reversible but differs essentially from the plastic 
deformation which is caused by dislocation, a permanent damage to the crystal structures. 
However, the transformation deformation of SMAs resulting from the de-twining or twining 
deformation of martensitic or reverse phase transformation is recoverable when thermal 
energy is input to the SMAs. A complete constitutive equation can thus be described by 

(dE} = (dE e } + (dE'} + {dE e } + { d { r }  

=(~} l{d~}+{~} l(d~}-(~} ' ( K } d T + - - -  
3 deePq 
2 ~.  

{#} + {a} d T .  (35) 

Most applications of SMA are in the transformation region with very few applications 
utilizing the plastic deformation range. The thermomechanical constitutive relation for 
SMAs may be further simplified if the plastic strain is neglected. The stress-strain relation, 
thus, can be written as 

{~} '{K} - { 
{I} {dE} + if,) dT (36) {dd} : (~}  1 + { ~ } - l  { ~ " ' ~ ' ~ { ~ }  ' 

where the { ~ }-1 is zero in the elastic range. Therefore, the above constitutive equation is of 
the same form as Hooke's law within the elastic region. In case of proportional loading at a 
constant temperature, Eq. (36) may be integrated on both sides, resulting in a total strain 
theory similar to Hencky's stress-strain relation of plastic materials [12] and given by 

{i} 
{[7} = {~} 1 + { ~ }  1 { E } .  (37) 

In a one-dimensional tensile test the martensitic transformation starts at an elastic stress 
limit, cre. It is assumed that the phase transformation in a multi-dimensional stress state 
occurs when the equivalent P -K stress, deq, reaches the elastic stress limit, o- e. 

A case study 

The constitutive relations developed in the previous section are material and geometrically 
nonlinear. Solving even a simple problem requires sophisticated finite element programs. 
Here, in order to demonstrate the utility of the multi-dimensional constitutive relation, a 
simple example of a circular SMA rod under torsion is presented. 

As we know, it is very difficult to solve finite strain problems, even a simple problem such 
as the torsion of a circular rod. Since the purpose of this paper is to demonstrate the 
modeling of the material nonlinearity of SMAs, it is assumed here that the cross-section of 
the circular SMA rod remains planar and its radius does not change in order to simplify the 
analysis. This assumption is reasonable if the rod is thin and the shear strain (which is 
proportional to the radius of the rod) is relatively small. 
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Stress-strain analysis 

Considering a point (X Y Z) in the un-twisted rod (original configuration), its new position is 
at (x y z) if the rod twists by OZ where 0 is the angle of twist per unit length. The new 
position can be expressed as follows if the cross-section of the rod is assumed to remain 

planar: 

x = X cos(OZ) - Y sin(OZ) 

~ ~ ; iin(OZ) + Y cos(OZ) (38) 

The Green-Lagrange strains solved from Eq. (3) are 

{gxx ~vv ~zz 7xv Yvz ~zx) = {0 0 0 0 XO - YO} . (39) 

The gzz is assumed to be zero. Accordingly, the following geometrical relation can still be 
used for the finite rotation problem: 

~, = rOZ. (40) 

Since only z/y z and ~zx exist, the non-zero stress components are ~vz and ~zx, The Cauchy 
shear stress ry z and zz~ can be solved from Eq. (4) as follows: 

I ~x = ~zx c o s ( 0 Z ) -  r-vz sin(0Z) 
(41) 

~yz ~'-vz cos(0Z) + ?zx sin(0Z) 

The main boundary and equilibrium condition at the end of the rod where torque, ~-, is 
applied can be expressed as 

- 

( • z yX  - -  rzyy ) dx dy = ~-~ = fizz = 0-, (42) 

where 9-z~ is the torque measured in the current reference and J-zz is the torque in the 
original reference. Substituting Eqs (38) and (41) into Eq. (42) yields: 

f (TrzxX-~zvY) dX d Y =  $ ' ,  (43) 

which indicates that the following equation can be still applied to this finite strain rotation 
problem. The rod is assumed to be a unit length long and only the stress and strain at the 
end of the rod are examined. 

? = G'y = GrO - 2~-r (44) 
7 r a  4 • 

The equivalent stress and strain from Eqs (12) and (13) are 
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(45) 

and 

1 
E-eq = ~ 'y. (46) 

Since the shear stress has its greatest value at r = a, the bar begins to have stress-induced 
phase transformation at the outer surface. When the equivalent stress,  ~?eq, at the radius, a, 
reaches o'~, the corresponding critical torque and twist are 

1 3 3e = ~X/-3~ro-~a (47) 

and 

(48) 
° e -  x/-3Ga " 

If the torque is increased further, a transformation annulus forms near the boundary, leaving 
a central zone of elastic material within a radius, c. The stress distribution in the elastic 
region is linear with the equivalent stress reaching o- e at r = c. The shear stress in the central 
elastic region is given by 

~ -  % r O<~r<~c. (49) 
v ~ c  

The stress distribution in the transformation annulus obeys the constitutive relation given in 
~eq ~ ~( 0~eq "~ 

Eq. (36). From Eqs (12) and (13), the terms { 0~ J and t 0~ J may be determined to be 

O 8eq 1 (50) 

and 

07r j 
= V'3. (51) 

The inverse of the elastic material property matrix is simply 1/G in this case. The shear 
modulus, G, is D/3 for incompressible material. All material properties are assumed to be 
constant herein. Based on the above discussion, {~}-~ and {K} are given by 

0E 
{ ~ } - I  ~- 3E L 0(Teq (52) 

and 

O + 1 ~  - -  
OT 

{K} - 0_= (53) 

O6-eq 

The stress-strain relation in the transformation annulus is given by 
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( l - f ~  0~ ] d ~ = G d ~ .  
O0"eq ] 

(54) 

Integrating on both sides yields: 

(55) 

where the variables with subscript '0' are the initial conditions. Assuming the initial phase of 
the bar is austenite and the ambient temperature is above M,, the stress-strain relation can 
be simplified to: 

= G-7 + ¢ .  (56) 
V 3  

The martensite fraction, ~, from Eq. (25) is 

= ½ {COS[aM(T - Mf) + bMX/-3=r] + 1}. (57) 

The shear stress distribution in the transformation annulus ~(r) is given by 

f~ 
= GO~ + ~ {cosIaM(T-- MI. ) + bMX/3÷ ] + 1) c ~< r ~ a .  

A V O  
(58) 

A numerical iteration scheme is required to determine the shear stress. The equivalent stress 
at the elastic interface is the elastic stress limit, o- e. The radius of the central elastic zone, c, 
can be determined from the following equation: 

(59) c - X/-3GO " 

The resultant moment from the distributed shear stress is expressed as 

f0 c3 c f o'er 
3- = 2rr dr + ~:(r)r227r dr .  (60) 

A closed-form integration of Eq. (60) may be obtained by integrating by part of its second 
integration term, yielding: 

~'- - -  or e 7J'C 1 _ 3 ore 1 r°ut 

2V~  + 3  r°u'a - ~  c3 - 3  evsr 3d~, (61) 

where You, is the shear stress at r = a, and r can be solved from Eq. (58) in terms of ~. 
With increasing torque, the equivalent stress at r = a reaches the yield strength, ory, which 

corresponds to a critical torque, •y. A torque higher than 3y will result in plastic 
deformation requiring plastic constitutive relations. The applied torque is restricted to be 
below ~y in this study. This critical twisting angle, Oy, can thus be determined from Eq. (58) 
a s  

1 
Oy- V 3 G a  (ory - 1 ) ) .  (62) 
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The critical torque, ~ ,  can then be determined from Eq. (61). The martensite fraction 
distribution, £(r), can be determined by substituting ~=(r) into Eq. (57). 

The residual stress-strain distribution may be obtained by superimposing an elastic stress 
distribution caused by a torque of -J- .  It is assumed that the maximum equivalent stress of 
the residual stress field is less than O-e, SO the martensite fraction distribution may not be 
altered. The residual stress distribution may then be given by 

2 g r  
"~res = ~(r) 4 • (63) 

77"0 

The residual twist, Ores, is determined by the same superposition approach, 

23- 
0re ~ = O(T) 7rGa 4 , (64) 

and the residual strain is obtained from the expression: 

~es = r~es '  (65) 

Analysis of  the shape memory effect 

Some of the residual twist of the SMA bar will be recovered upon heating due to the shape 
memory effect. If the boundary condition of the SMA bar is free, heating of the SMA bar 
results in a controlled recovery. This is different from the uniaxial free recovery in which the 
residual transformation strain is fully recovered and the stress is zero. In the case of the 'free 
recovery' of an SMA bar, the central elastic zone may generate an internal reactionary force 
to the recovery of the outside transformation annulus. Heating the bar results in a certain 
amount of twist recovery while storing energy to the central elastic zone. The stored energy 
will be released upon cooling the SMA bar, resulting in a reverse deformation of the outside 
transformation annulus (generating new martensite). It is similar to a bias spring SMA 
actuator or an SMA bar with a two-way effect. 

This unique characteristic of an SMA bar (or other similar geometries) may be very useful. 
This 3-D SME characteristic is actually a two-way effect by structure rather than a two-way 
effect by material. An SMA bar itself functions as an actuator without bias springs. Proper 
design of the size of the central elastic region may achieve an overall two-way effect. A 
'smart' blade of turbine compressors which can adjust its attacking angle according to 
in-coming flux may be designed based on this concept. 

The theoretical analysis of this 'free recovery' of an SMA bar is very difficult. A numerical 
technique such as the finite element method must be used. On the contrary, it is relatively 
easy to analyze the behavior of restrained recovery in this case. 

In the restrained recovery case, the residual deformation is restrained and no deformation 
is allowed during the heating and cooling process. It is assumed that heating starts from A, 
(ignoring the thermoelastic effect) and the temperature is uniform throughout the SMA bar. 
Equation (36) becomes: 

= - { ~ } - I { K }  d T  (66) { dar}  {~} ' + { ~ } - '  , 
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where superscript 'r' denotes 'recovery'. In the case of restrained recovery of SMA bars, the 
above equation may be simplified to: 

O + ~  

1 - f t  d U -  V'3 d T .  (67) 

Integrating on both sides yields: 

® 12 
~ ' -  7 0 = ~ ( T -  To) + ~ (~: -  ~:o), (68) 

where ?0 is the residual stress obtained from Eq. (63), T O is A,, and ~:0 is the martensite 
fraction obtained from the stress-strain analysis (Eq. (57)). ~ from Eq. (26) is given by 

~= _~Co {COS[aA( T _ As ) + bAV"~Trr] + 1} (69) 

Substituting Eq. (69) into Eq. (68) yields the shear stress distribution in the transformation 
annulus. Note that the residual stress in the central elastic zone is not altered due to the 
restrained boundary condition. The resultant torque from the recovery shear stress thus may 
be calculated using Eq. (61). 

Results and analysis 

The numerical results of the torsion of a round SMA rod are given in this section. The 
diameter and length of the rod are 5 mm and 1 m, respectively. The rod is assumed to be 
made of a Nitinol SMA and its properties are listed in Table 1. 

An average elastic modulus is used in this paper, e L is the maximum recoverable strain. 
The phase transformation tensor, 12, is related to the elastic modulus by 

= - eLD . (70) 

Mr, M,, A, ,  and A r are the transition temperatures of SMAs. C A and C M a r e  the stress 
influence coefficients of SMAs. The elastic stress limit, o- e, and yield strength, O-y, are given 
by 

{ ~ r  e = CM( T--  Ms) 

O'y C A ( T -  M r ) ,  
(71) 

The four constants, aM, aA, bM, and b A appearing in Eqs (25) and (26), are defined by 

Table 1. Material constants  for a Nitinol alloy [3] 

MPa °C MPa/°C 

D M, M I A ,  A~ C A C M 0 

9.0 18.4 34.5 49 10.3 10.3 0.55 46,650 

% 

E L 

6.7 
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a M = 7rl(M s - Mr) 

h A = - - a A / C  A 

(72) 

b M = - - a M / C  M . 

Shown in Fig. 1 is the shear stress and martensite distribution at the end of the SMA rod for 
various angles, 0. The dashed line is the martensite fraction and the solid line is the shear 
stress distribution. If the twisting angle is less than 0e, the shear stress has a linear 
distribution with respect to the radial distance and there is no stress-induced martensitic 
phase transformation. There will be some stress-induced martensite once the twisting angle 
exceeds 0e. When 0 = Oy/lO,  only one-fifth of the rod (radial direction) remains elastic, as 
shown in Fig. 1, and the maximum martensite fraction (8%) is at r = a. When 0 reaches Oy, 

only a very small portion of the cylinder (in the radial direction at this cross section) is 
elastic. 

Shown in Fig. 2 is the applied torque vs. the twisting angle of the rod. The torque and 
twisting angle are normalized by maximum elastic torque and twisting angle. It can be seen 
that the rotation can be enormous before reaching plastic for this long, thin rod (10 mm in 
diameter and 1 m in length). 

We have demonstrated the capability of the multi-dimensional constitutive equations in 
solving the torsion problem of SMA rod. The results illustrated in both Figs 1 and 2 show 
that the torsion of SMAs is a very complicated problem. Detailed analysis, including the 
shape memory effect in torsion, will be given in another paper in order to reduce the length 
of this paper. 
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Fig. I. Shear stress and martensite distribution at the end of an SMA rod for various twisting angles. 
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Fig. 2. Normalized torque and twisting angle relation for an SMA rod. 

Concluding remarks 

A multi-dimensional thermomechanical constitutive model of SMAs is developed in this 
paper. The multi-dimensional constitutive model is based on the thermomechanical aspects 
of shape memory alloys and can be used to study the mechanical behavior of complex 
structures made of shape memory alloys. A numerical analysis of the torsion of a shape 
memory alloy rod was presented to show how the constitutive relations could be used. 
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